Perspectives on vaccination against respiratory syncytial virus

What makes the development of RSV vaccines challenging?

Oliver Wicht PhD,
Projectleader MD-RSV antibodies
RIVM, Centrum infektieziektenbestrijding

http://www.strategischprogramma.rivm.nl/gezondheid_afweer
RSV is a pleomorphic paramyxovirus

- Same family as measles virus, mumps virus, and metapneumovirus
- Vaccine is not available
- Pathogenesis varies from mild cold to bronchiolitis and pneumonia, rarely lethal
- Reinfections frequently occur throughout life, 5-20% of population per annum

RSV-mediated respiratory disease

- RSV infection by large droplets and contaminated surfaces
- Virus shedding: 3-5 days
- URT: 1-3 weeks
- Virus cleared
- Upper respiratory tract infection: Rhinorrhea, cough, common cold
RSV-mediated respiratory disease

RSV infection by large droplets and contaminated surfaces

Lower respiratory tract infection:
- Fever, malaise, headache, myalgia, sore throat, cough, dyspnea, rhinorrhea
- Otits, Sinositis, brochiolitis, pneumonia

Possible longer term effects:
- Airway hyperreactivity, wheezing, asthma
RSV-mediated respiratory disease

- RSV stays in the lungs, usually not systemic
 - Mucosal pathogens are hard to study because conditions are hard to mimick in cell culture

RSV infection by large droplets and contaminated surfaces

Lower respiratory tract infection:
- Fever, malaise, headache, myalgia, sore throat, cough, dyspnea, rhinorrhea
 → Otits, Sinositis, brochiolitis, pneumonia

Possible longer term effects:
- Airway hyperreactivity, wheezing, asthma

Virus cleared

3 - 5 days

1 - 3 weeks

4 - 8 months

Lower respiratory tract infection:
- Fever, malaise, headache, myalgia, sore throat, cough, dyspnea, rhinorrhea
 → Otits, Sinositis, brochiolitis, pneumonia

Possible longer term effects:
- Airway hyperreactivity, wheezing, asthma

Virus cleared
Newborns suffer from RSV infection

- Primary infections are usually symptomatic; broad range of severity
- Complications occur early in life, peak hospitalization at 2.5 months of age
- 90% of individuals had RSV one year after birth

Age at admission to hospital with RSV disease

Age at time of hospitalization for HRSV disease (months)

J Infect Dis 1999;180:41–49
Long term sequelae of severe RSV infection

- RSV bronchiolitis → increased risk of recurrent wheezing and asthma until early adulthood
- Common genetic predisposition for RSV infection and asthma
- RSV prevention trial (by monoclonal antibody) provided proof of the causal relationship between RSV infection and development of asthma (Simoes et al. J Allergy Clin Immunol 2010;126:256-262)

RSV incidence in NIVEL sentinel surveillance

- NIVEL sentinel network of general practitioners (~40 practices)
- Patients showing acute respiratory infections (ARI), among which influenza-like illness (ILI)
- Molecular diagnosis of infectious agents in respiratory samples

Indexed figure showing the seasonality of RSV occurrence in the Netherlands

Source: RIVM/IDS & EPI, NIVEL; courtesy Adam Meijer, RIVM/IDS
RSV-diagnosed patients suffering ARI or ILI as registered by NIVEL sentinel surveillance

Indexed figure showing the age distribution of RSV cases in the NIVEL cohorts

Source: RIVM/IDS & EPI, NIVEL; courtesy Adam Meijer, RIVM/IDS
RSV incidence amongst elderly

- GRIEP study amongst community dwelling, healthy adults ≥ 60 years of age
- 2500 individuals were monitored per season
- ~10% showed with influenza-like illness

Source: RIVM/IIV, GRIEP1-3, Josine van Beek

* Preliminary data
Public Health impact of RSV infections

- There is medical need for an RSV vaccine
 - Risks groups are more likely to benefit
 - Vaccination strategy depends on target group
 - Endpoint of vaccination trials has to be well defined

- Disease pathogenesis and immunity not well understood
Cellular immune response against RSV

- Remarkable influx of immune cells into the lungs during LRTI
- In contrast to other paramyxoviruses, RSV has extra proteins for immune evasion
- Type of CD4+ T-cell help impacts immunopathology
- Vaccines need to support humoral response by triggering the proper T-cell response without enhanced disease
Role of immunopathology during RSV disease

- Robust cellular response required for virus clearance
 - Th1 biased CD4+ T-cell response
 - robust CD8+ T-cell response
- Excessive inflammatory response in LRT
 - Excessive mucous production
 - Airway hyperreactivity
 - Tissue damage
 - Th2 biased CD4+ T-cell response associated with severe disease
Humoral immune response against RSV

- Single RSV serotype
- Infection results in systemic serum IgG and secretory IgA on mucosal epithelium
- Main targets for antibodies:
 - RSV fusion protein F (conserved)
 - RSV glycoprotein G (variable per subgroup RSV)
Nasal IgA protects from infection

- Protection of healthy adult volunteers against RSV challenge

Antibody response is weak and of short duration

- Antibody response after RSV infection by challenge of adults

Antibodies are prophylactically applied to high risk infants and protect against severe disease.

A multicenter, randomized, placebo-controlled trial in premature infants or children with bronchopulmonary dysplasia.

Vaccination against RSV

Risk groups – whom to vaccinate?
- Premature babies
- Infants under 2 years with chronic lung disease or heart problems
- Adults 65 years and older
- People with weakened immune systems, such as from HIV infection, organ transplants, or specific medical treatments like chemotherapy

Legacy
- 1960s formalin-inactivated RSV vaccine applied to newborns resulted in enhanced pathology upon natural RSV infection
- Ongoing safety concerns
Attenuation of disease by antibodies in early life

![Graph showing the attenuation of disease by antibodies in early life.](image-url)
Protection by vaccination early in life

- Placental transfer of maternal antibodies
- Maternal neutralizing antibodies in child
- Attenuation of disease by antibodies
- Vulnerable period

- Child’s own antibodies by vaccination
- Child’s own antibodies without vaccination
Maternal vaccination strategy

- Placental transfer of maternal antibodies
- Vaccination of mother during pregnancy
- Maternal neutralizing antibodies in child
- Child’s own antibodies by vaccination
- Child’s own antibodies without vaccination

Vulnerable period
What should a vaccine achieve?

Block RSV infection
- Does it require long lasting mucosal (IgA) response?
- Recurrent infections throughout life do not give protection
- Experimental reinfections of adults with the same RSV strain after 6 months

Protect from severe disease
- 50% efficacy or monoclonal antibodies in risk patients
- High concentrations of systemic IgG required?
- Severe disease occurs in newborns with high maternal antibody titers
- Unknown mechanism of protection

- No RSV disease = no asthma and wheezing?
RSV Vaccine Snapshot

Preclinical

<table>
<thead>
<tr>
<th>LIVE-ATTENUATED</th>
<th>WHOLE-INACTIVATED</th>
<th>PARTICLE-BASED</th>
<th>SUBUNIT</th>
<th>NUCLEIC ACID</th>
<th>GENE-BASED VECTORS</th>
<th>COMBINATION/IMMUNOPHYLAXIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LID/NIAID/NIH (PIVI-3/RSV)</td>
<td>Fraunhofer (VLP)</td>
<td>Fraunhofer (VLP)</td>
<td>Janssen Pharmaceutical (RSV pre-F Protein)</td>
<td>GlaxoSmithKline (RNA)</td>
<td>Bavarian Nordic (MVA)</td>
<td>Fudan University (DNA + protein combo)</td>
</tr>
<tr>
<td>Pontificia Universidad Catolica de Chile (BCG)</td>
<td>Meissa Vaccines (RSV)</td>
<td>Georgia State University (VLP)</td>
<td>Myometrics (Virosome)</td>
<td>Inovio Pharmaceuticals (DNA)</td>
<td>GenVec (Adenovirus)</td>
<td>MedImmune (Anti-F mAb)</td>
</tr>
<tr>
<td>Intravacc (Delta-G RSV)</td>
<td>Sanofi Pasteur (RSV)</td>
<td>Ruhr-Universitat Bochum (VLP)</td>
<td>University of Massachusetts (VLP)</td>
<td>Ruhr-Universitat Bochum (DNA)</td>
<td>Emergent BioSolutions (MVA)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>St. Jude Hospital (SeV/RSV)</td>
<td>MedImmune, LID/NIAID/NIH</td>
<td>University of Massachusetts (VLP)</td>
<td>University of Gent/VIB (RSV peptides)</td>
<td>University of Pennsylvania (DNA)</td>
<td>RuemlHuei Biopharma (Adenovirus)</td>
<td>Fudan University (DNA + protein combo)</td>
</tr>
<tr>
<td>SeV/RSV</td>
<td>MedImmune, LID/NIAID/NIH</td>
<td>University of Massachusetts (VLP)</td>
<td>REPS (SH protein)</td>
<td>University of Pennsylvania (DNA)</td>
<td>University of Pittsburgh (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>University of Georgia (RSV G protein)</td>
<td>University of Massachusetts (DNA)</td>
<td>MedImmune (Adenovirus)</td>
<td>Fudan University (DNA + protein combo)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>University of Illinois (RSV F protein)</td>
<td>University of Massachusetts (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
<tr>
<td>MedImmune, LID/NIAID/NIH</td>
<td>RSV</td>
<td>University of Massachusetts (VLP)</td>
<td>Immunovaccine (DPX-RSV)</td>
<td>University of Pennsylvania (DNA)</td>
<td>Janssen Pharmaceutical (Adenovirus)</td>
<td>MedImmune (LID/NIAID/NIH)</td>
</tr>
</tbody>
</table>
Vaccine concepts

Antibodies can block virus infection by stopping virus entry.

RSV fuses its membrane with the host cells to enter.
Refolding of the RSV F protein during virus entry

Antibodies against prefusion F should work well

Prefusion-specific antibodies like D25 (MedImmune, prophylactic antibody in pipeline)

Subunit vaccine candidates based on prefusion F

- Stabilization of prefusion F protein structure, recombinant protein expression
- Independent vaccine development by Janssen (Leiden), Mucosis (Groningen), and NIH (Bethesda, USA)
- Subunit vaccine concept works in naïve animals
 - McLellan et al. Science. 2013 Nov 1;342(6158):592-8
 - Krarup et el. Nat Commun. 2015 Sep 3;6:8143
- Prefusion F elicits prefusion-specific neutralizing antibodies

- Anti-prefusion F antibodies in human serum correlate with RSV neutralization
Prefusion epitopes are missing on formalin-inactivated RSV vaccine and RSV from preparations

Indexed figure showing the availability of prefusion F epitopes in FI-RSV vaccine preparations versus prefusion F protein

Potential reason for failure of formalin-inactivated RSV vaccination trial?

Source: Widjaja and de Haan, Utrecht University, manuscript in preparation
Can prefusion-specific maternal antibodies prevent disease?

- RSV-positive patient cohort at RadboudUMC <3 months of age
- Analysis of maternal antibodies of healthy control, hospitalized (moderate) and ICU admitted (severe) RSV cases

Indexed figures for detection of prefusion-F Specific antibodies in blood of newborns

→ Value of prefusion F vaccines and antibodies still unclear

Jans & Wicht et al. manuscript in preparation
Antibody functions beyond RSV neutralization?

Antibody-RSV immune complexes modulate innate immune signaling

Vissers et al. Cytokine. 2015 Dec;76(2):458-64.
Antibody-mediated enhancement of RSV infection - neutralizing versus enhancing characteristics -

Many antibodies → Insufficient amount of antibodies → No antibodies

→ neutralization
→ enhanced infection via antibody receptors
→ ‘normal’ infection
Summary

- RSV is a particular pathogen
 - A single serotype but frequent reinfections throughout life
 - Immune response can tip towards immunopathology
 - Predisposition for severe disease unclear
 - Infection is confined to the airways
 - Short lasting immune response – elaborate immune modulation (evasion?) by RSV
 - Antibodies can protect from disease to some degree
- Fundamental research enabled novel vaccine concepts that are being explored
Until then
Acknowledgements

Rijksinstituut voor Volksgezondheid en Milieu
Ministerie van Volksgezondheid, Welzijn en Sport

Willem Luytjes
Teun Guichelaar
Josine van Beek
Liz van Erp

Radboud Universiteit Nijmegen

Gerben Ferwerda
Jop Jans
Inge Smeets
Inge Ahout
Marien de Jonge

Universiteit Utrecht

Ivy Widjaja
Xander de Haan

IDS
• Adam Meijer
• Pieter Overduin
• team of technicians

EPI
• Marit de Lange
• Anne Teirlinck

Ziekenhuis

Gé Donker